Friday, December 20, 2013

China reveals hypersonic Airplane design, could reach 6600 mph, fly from Beijing to New York in 2 hours

By Alton Parrish via IIAI, 21 November 2013

How do you design a hypersonic airplane that can travel from Beijing to New York in only two hours at 6600 miles per hour?

 Dr. Cui Kai and his group from State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences set out to tackle this problem. After three years of innovative research, they presented a body-wing-blending configuration with double flanking air inlets layout to aim at design requirements of high lift-to-drag ratio as well as high volumetric efficiency of next generation hypersonic airplanes.

This is a design example of hypersonic airplanes. - Credit: ©Science China Press

Moreover, a novel forebody design methodology which by rotating and assembling two waverider-based surfaces is firstly introduced. Their work, entitled "Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets", was published in SCIENCE CHINA Technological Sciences 2013(8)issue.

Air-breathing hypersonic vehicles has been much concerned by United States and other developed countries since the mid-20th century, and a series of research projects has been proposed since 1980s. The completely integrated design of the airframe and propulsion system is generally adopted for the air-breathing hypersonic vehicles, however, as both the aerodynamic performance for the airframe and the engine intake/exhaust requirements shall be taken into account simultaneously, the design difficulty increased dramatically. The current aerodynamic design for hypersonic vehicles is mainly for the demonstration vehicles which focused on minimizing resistance and the optimal matching between airframe and engine, and the forebody and engine inlet integrated design is the key issues for the configuration design.


The current air-breathing hypersonic vehicles can be mainly divided into two categories according to the different inlet layouts, i.e. with nose inlet and with ventral inlet. The hypersonic vehicle with nose inlet layout, such as the U.S. HyFly hypersonic demonstration vehicle, can efficiently achieve uniformly distributed airflow with high total pressure recovery coefficient for the engine by decreasing the interference of airframe to the maximum extent.


Continue to the full article,

1 comment:

Wherami said...

Spiffy! You find great articles there Laron :) I hadnt seen that.